

Open Source Gadget bc9とは

株式会社 ビート・クラフト 龍池哲也

about us

- BeatCraft, Inc.
 - http://www.beatcraft.com/
 - 墨田区錦糸 (JR, 半蔵門線 錦糸町駅)
 - ・メディアフレームワーク
 - Jakar
 - Open Source Gadget
 - bc9

ガジェットとは?(1)

gadget [名詞]

- ちょっとした(便利な)機械装置[仕掛け]
- 気のきいた小道具,付属品,部品 (ジーニアス英和辞典 第4版より)

→ 気のきく、便利で携帯して使える お気に入りの小道具を作ること

BEATCRAFT

ガジェットとは?(2)

- ガジェットの例
 - PDA (Personal Digital Assistant)
 - ChipCard, DataSlim, Palm, Clie, Zaurus, EM-ONE...
 - デジタルカメラ
 - 携帯電話
 - iPhone, TouchDiamond, EMONSTER,...
 - その他
 - Chumby

これまでの不満な点

- いままでのPDAの不満
 - センサなどのデバイスが拡張できない
 - メーカーが用意したものだけ
 - OSやドライバがクローズドで改良できないものが多い
 - → アイディアがあっても実装できない
 - → 必要な機能をもったガジェットを自作してしまおう
 - → Open Sourceとして公開し、みなんで作れるものを

作りたいガジェット

- Linuxが動作する
 - Linuxの資産の利用
 - デバイスドライバが作れる
- 携帯可能
 - 持って歩け、移動先でも手軽に使える
- タッチスクリーン付カラー液晶
- 音声の入出力
- 3軸加速度センサ、電子コンパス、GPS

などなど....

Open Source Gadget bc9

- Open Source Gadget bc9 とは
 - PDA型で携帯可能なGadget
 - Linux/UNIX等で利用可能
 - OpenEmbedded Linux
 - Google Android (Open Source版)
 - NetBSDも動作可能
 - 加速度センサ、RTC、AC97などを内蔵

Open Source Gadget

- ソースの公開
 - 同じものをつくるために必要となる情報
 - 技術情報
 - 回路図
 - ・パーツリスト
 - ・ガバーデータ
 - ケース (筐体) 3Dデータ などを公開予定 (公開作業中)

これらの情報を利用して同じものが作れる改良/変更も自由

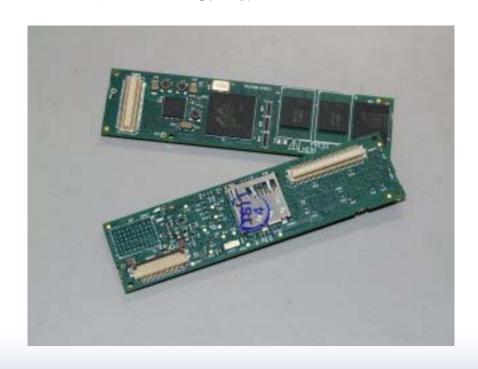
bc9の紹介

• bc9 外観

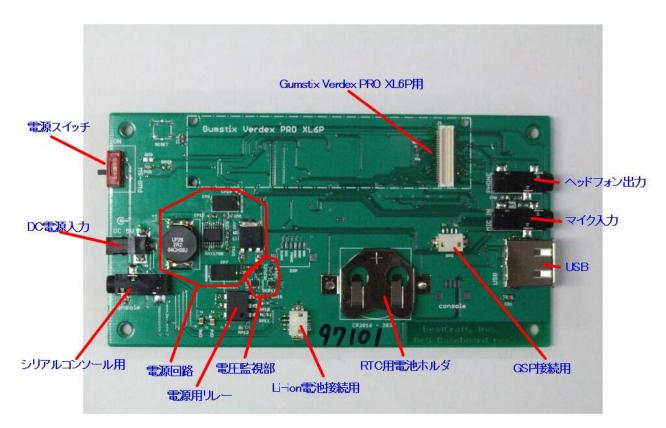
YouTube でも動画を公開中! beatcraft, bc9 で検索写真は、開発中のものです

BEATCRAFT

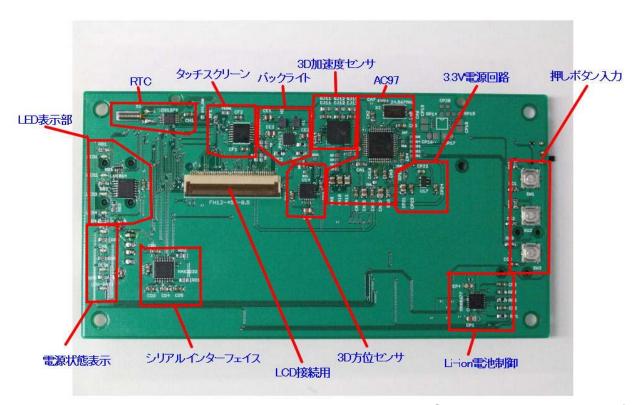
bc9のハードウェア構成


- CPUボード
 - gumstix Verdex PRO XL6P (米gumstix社)
 - PXA270 @600MHz
 - RAM 128MB/Flash ROM 32MB
- ・ベースボード
 - 電源、インターフェイス回路、センサ搭載
 - DC 5V電源, Li-ion電池に対応
 - USB, AC97, GPS, シリアルコンソール
 - 3D加速度センサ
 - 入力ボタン, LED出力
- タッチスクリーン付カラー液晶
 - 480 x 272 @24bitカラー
 - 白色LEDバックライト、タッチスクリーン
- 外装ケース

gumstix Verdex PRO XL6P


- 米国 gumstix社の製品
 - 80x20mmのサイズに CPU, メモリなど
 - IOなどは 専用のコネクタ経由で接続

これだけでは、 なにも出来ない 拡張ボードが必要


ベースボード外観(1)

写真は開発中のものです

ベースボード外観(2)

写真は開発中のものです

ベースボードの作り方

- 大まかな手順
 - 実装する機能を決め、回路を設計
 - プリント基板の製造データを作成
 - 部品を入手
 - プリント基板の製造依頼
 - 実装サービスもある
 - 組立て
 - 動作確認

プリント基板の製造

- Gerberデータを作って基板メーカに依頼
 - プリント基板CAMソフトを使って作成可能
 - 今回はEAGLE (ドイツのCadSoft社製) を利用
 - 回路図を作成
 - ボードレイアウト
 - 部品を配置
 - ・配線の作成
 - Gerberデータ RS-274-X形式で出力
 - 基板メーカに発注

パーツの入手

- 必要なパーツを発注して入手
 - Digi-Keyが便利
 - 基本的に米国からの輸入だが航空便で早い (成田に近いと、月曜の注文で水曜に到着も)
 - 大量に買うと安い (よく使う部品は、まとめて買う)
 - 他にはメーカー直販も
 - 秋葉原の店頭では、汎用品+α程度しか買えない
- 中には購入が難しいパーツもある
 - _ ユーザが限られているパーツなど
 - 最小購入数が 1,000個だったり...
 - そもそも、相手にされない場合も...
 - 設計時に、入手性を確認しておく

組み立て作業

- 部品が揃ったら組み立て作業
 - 組み立ての順序を検討してから作業
 - 基本的には背の低い部品、熱に強い部品から
 - ICを先に実装
 - ICの周りの抵抗やコンデンサなど
 - 先に抵抗やコンデンサをつけると内側になるICの取り付けが困難に
 - パーツの取り付け向き、同じ大きさの部品に注意
 - チップ抵抗、コンデンサは混じると区別できなくなる
 - 多ピンのコネクタ類(プラスチック製)は、再生が難 しいので、失敗しないように

組み立て作業

・ 半田こてでひとつひとつ丁寧に...

半田付け作業

- 組み立て作業でメインになる作業
 - 練習が必要
 - コツのひとつは半田コテの使いこなし
 - ・コテ先の選択と手早く、正確に
 - ・熱の入れ方
 - プリント基板と部品の両方をきちんと加熱
 - 不慣れな人は部品のみ加熱する傾向にある
 - 加熱のし過ぎに注意
 - ・半田の量の見極め
 - 半田の量は多すぎても少なすぎても不可
 - 不慣れな人は多すぎる傾向にある

動作チェック

- 組み立てが完了したらチェック
- 動作させる前に
 - 取り付けミス(違う部品、取り付け向き)がないか
 - 半田付け不良がないか
 - ・ 半田の浮き、割れ
 - 見えにくい場合は、4~10倍以上のルーペで
- 異常を感じたら
 - 電源を切って回路図なども再チェック

bc9設計·製作談1

- 最初は半田付けに苦労しました
 - 最近の電子部品のほとんどはチップ部品
 - 抵抗やコンデンサは 1.6 x 0.8mmなど
 - ICやソケットなどのピッチは 0.5mmが多い
 - 小さいものは 0.3mm
 - ピン数は~80ピンやそれ以上も...
 - _ リードレスタイプもある
 - QFNなどなら手半田付けは可能
 - 一部(加速度センサ)は勘!?
 - BGAだと手半田は無理かも?

bc9設計•製作談2

- 複雑な配線に苦労しました
 - アートワーク作業に多くの時間を割きました
 - パーツを追加したり、置く場所を変更すると...
 - ひとつ修正すると、修正が連鎖的に?...
 - プリント基板は 2層または 4層
 - 同じ層で配線が交差してはいけません
 - 裏や別の層を経由するにはスルーホールが必要
 - スルーホールの近くは配線できない
 - 配線密度がさがり、配線可能な面積が減る

bc9設計•製作談3

- 動かないときの原因の追究
 - なぜ動かないのか、わからない
 - ・ 半田付け? 回路設計ミス?
 - デジタル回路も繋がっていればOKではない
 - 結局はアナログな世界
 - 理想的な回路は存在しない
 - 電子が流れる気持ち、電子が受ける力

発展していくGadget

- ハードウェアもカスタム可能
 - デバイスの追加/変更が可能
 - もっと大きな/小さなLCDパネル
 - 温度や気圧などのセンサ類の追加
 - マウス/トラックボール?
 - アイディア次第で、カスタム可能
 - オリジナルな Android端末
 - 場所、時間、環境をセンスして動作?

さまざまな情報を、共有し、アイディアを 交換して、さらなる発展へ

labs.beatcraft.com

- bc9に関する技術情報を集めて公開
 - http://labs.beatcraft.com/ja/
 - OpenEmbbed Liunx
 - Androidの移植
 - 回路図、Gerberデータ
 - 外装ケース 3Dデータ
 - 確認作業中で、公開出来ていないものもあります
 - 準備が出来次第、公開します
- その他の情報も公開しています
 - 過去の社内プロジェクトモデルロケット3Dプリンタ

bc9-dev

bc9などの情報交換をする Google Group http://groups.google.com/group/bc9-dev

どなたでも参照することができます 発言可能な参加メンバーは承認制 希望の方は、リクエストをお送りください

bc9 workshop

bc9 Baseboardを完成させるイベントを予定

- 日時: 不定期に開催(主に土曜の午後を予定)
 - 3~4時間程度を目標
- 定員: 4~5名程度
 - 難しい箇所は作業済みの半完成品
 - 必要な工具類は、お貸しします
- 場所: BeatCraft ミーティングスペースほか
 - 地方開催の可能性も?
- 参加費: Baseboard と部品代 (2万円弱)を予定
 - gumstix とLCDパネルは各自で用意
- 詳細は、参加申込者にお知らせします

ありがとうございました

- ご静聴 ありがとうございました
- Q and A

-??

連絡先: bc9@beatcraft.com