Deep Learning/Installing Chainer1.5
[
Front page
] [
New
|
List of pages
|
Search
|
Recent changes
]
Start:
[[labs.beatcraft.com]]~
[[Deep Learning]]~
#contents
*Installing Chainer1.5 [#q7990a54]
>
This article shows the points that you may be stumbled in...
**Components [#c1d7ee89]
>
The components listed below have been used since Chainer1...
Hardware~
- GPU: Corei7 3770
- Memory: 32GB
- GPU1 (for display): NVIDIA GeForce GT730
- GPU2 (for CUDA): NVIDIA Tesla K20c
~
Software~
- OS: Ubuntu 14.04.1 LTS
- Python: 2.7
- Cuda: 6.5
** Installing [#t83f04af]
>
As Chainer1.5 is installed with sudo pip install ?upgrade...
~
Reference: Chainer Install Guide: http://docs.chainer.org...
*** 1) Uninstall chainer-cuda-deps [#r1c88264]
>
Since Chainer1.4 starts using CuPy, this python module ha...
pip uninstall chainer-cuda-deps
*** 2) Upgrade pip [#le2516f3]
>
Without upgrading pip, the pip, which was previously used...
pip install ?upgrade pip
*** 3) Uninstall chainer [#abe283cb]
>
Please apply the uninstalling process at least twice on c...
pip uninstall chainer
*** 4) install libhdf5 [#yc75fad9]
>
In Install Guide, this module is supposed to be install w...
apt-get install llibhdf5-dev
*** 5) Install chainer [#de7a914d]
>
Finally, install the newest version of chainer. Since the...
pip install chainer
** Benchmarking [#mb28a6a0]
>
Since Chainer1.5.1 has been successfully installed, now, ...
Please apply the command line below.~
time -p python train_mnist.py -g 0
~
"-g 0" is the option for using GPU.
>
real 65.34
user 61.02
sys 2.66
>
The outputs are shown above. The outputs of previous vers...
** Using cuDNN [#z1abac63]
>
Performing the benchmark shown above, a warring shows up ...
~
cuDNN can be downloaded from NVIDIA's developer's site ([...
~
To download cuDNN, please answer the similar questionnair...
~
Since cuDNN does not include its installer, the folder of...
$ tar zxvf cudnn-6.5-linux-x64-v2.tgz
cudnn-6.5-linux-x64-v2/
cudnn-6.5-linux-x64-v2/INSTALL.txt
cudnn-6.5-linux-x64-v2/CUDNN_License.pdf
cudnn-6.5-linux-x64-v2/cudnn.h
cudnn-6.5-linux-x64-v2/libcudnn_static.a
cudnn-6.5-linux-x64-v2/libcudnn.so.6.5
cudnn-6.5-linux-x64-v2/libcudnn.so.6.5.48
cudnn-6.5-linux-x64-v2/libcudnn.so
These files are copied to CUDA install folder. In this wo...
cp cudnn.h /usr/local/cuda/include/
cp lib* /usr/local/cuda/lib64/
This is the end of installing cuDNN.~
>
To make cuDNN effective with Chainer, the clean installat...
pip uninstall chainer
pip install chainer
>
Now, the set up of Chainer1.5.1, includes cuDNN is comple...
real 64.97
user 60.91
sys 2.65
Using cuDNN, there is a little improvement on the results...
* Revision History [#ubea4053]
>
- 2016-02-15 This article is initially released.
End:
[[labs.beatcraft.com]]~
[[Deep Learning]]~
#contents
*Installing Chainer1.5 [#q7990a54]
>
This article shows the points that you may be stumbled in...
**Components [#c1d7ee89]
>
The components listed below have been used since Chainer1...
Hardware~
- GPU: Corei7 3770
- Memory: 32GB
- GPU1 (for display): NVIDIA GeForce GT730
- GPU2 (for CUDA): NVIDIA Tesla K20c
~
Software~
- OS: Ubuntu 14.04.1 LTS
- Python: 2.7
- Cuda: 6.5
** Installing [#t83f04af]
>
As Chainer1.5 is installed with sudo pip install ?upgrade...
~
Reference: Chainer Install Guide: http://docs.chainer.org...
*** 1) Uninstall chainer-cuda-deps [#r1c88264]
>
Since Chainer1.4 starts using CuPy, this python module ha...
pip uninstall chainer-cuda-deps
*** 2) Upgrade pip [#le2516f3]
>
Without upgrading pip, the pip, which was previously used...
pip install ?upgrade pip
*** 3) Uninstall chainer [#abe283cb]
>
Please apply the uninstalling process at least twice on c...
pip uninstall chainer
*** 4) install libhdf5 [#yc75fad9]
>
In Install Guide, this module is supposed to be install w...
apt-get install llibhdf5-dev
*** 5) Install chainer [#de7a914d]
>
Finally, install the newest version of chainer. Since the...
pip install chainer
** Benchmarking [#mb28a6a0]
>
Since Chainer1.5.1 has been successfully installed, now, ...
Please apply the command line below.~
time -p python train_mnist.py -g 0
~
"-g 0" is the option for using GPU.
>
real 65.34
user 61.02
sys 2.66
>
The outputs are shown above. The outputs of previous vers...
** Using cuDNN [#z1abac63]
>
Performing the benchmark shown above, a warring shows up ...
~
cuDNN can be downloaded from NVIDIA's developer's site ([...
~
To download cuDNN, please answer the similar questionnair...
~
Since cuDNN does not include its installer, the folder of...
$ tar zxvf cudnn-6.5-linux-x64-v2.tgz
cudnn-6.5-linux-x64-v2/
cudnn-6.5-linux-x64-v2/INSTALL.txt
cudnn-6.5-linux-x64-v2/CUDNN_License.pdf
cudnn-6.5-linux-x64-v2/cudnn.h
cudnn-6.5-linux-x64-v2/libcudnn_static.a
cudnn-6.5-linux-x64-v2/libcudnn.so.6.5
cudnn-6.5-linux-x64-v2/libcudnn.so.6.5.48
cudnn-6.5-linux-x64-v2/libcudnn.so
These files are copied to CUDA install folder. In this wo...
cp cudnn.h /usr/local/cuda/include/
cp lib* /usr/local/cuda/lib64/
This is the end of installing cuDNN.~
>
To make cuDNN effective with Chainer, the clean installat...
pip uninstall chainer
pip install chainer
>
Now, the set up of Chainer1.5.1, includes cuDNN is comple...
real 64.97
user 60.91
sys 2.65
Using cuDNN, there is a little improvement on the results...
* Revision History [#ubea4053]
>
- 2016-02-15 This article is initially released.
Page: